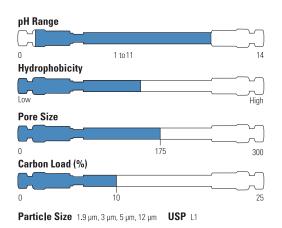


Outstanding peak shape for your separations

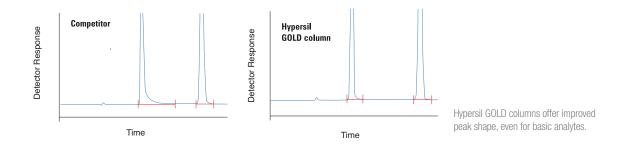
Hypersil GOLD Columns

Designed for improved chromatography, Thermo Scientific[™] Hypersil GOLD[™] columns are the culmination of 40 years of experience in the product development and manufacturing of HPLC media and columns. The range and capabilities of this state-of-the-art family of columns, with numerous chemistries and a range of particle sizes and hardware formats meet the challenges of modern chromatography.

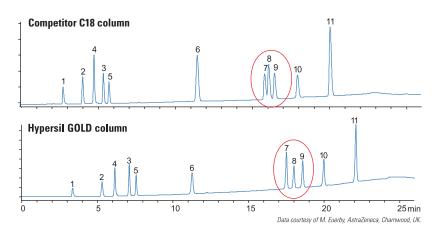
The highly pure Hypersil GOLD silica is manufactured, bonded and packed in ISO 9001:2008 accredited facilities, operating under strict protocols using robust procedures and extensive quality control testing. The manufacturing and bonding process creates an even surface with fewer silanols leading to reduced secondary interactions. This ensures consistent performance, column after column.


Hypersil GOLD HPLC columns are available in 12 different chemistries to optimize separations and maximize productivity. The extensive range of Hypersil GOLD columns offers chromatographers outstanding peak shape for reversed phase, ion exchange, HILIC or normal phase chromatography. With all 12 phases being available with 1.9 µm particle size, Hypersil GOLD columns offers chromatographers flexibility in choosing the correct column, whether they are using conventional or ultra-high pressure LC systems.

Improved Selectivity, Resolution and Productivity


Hypersil GOLD Outstanding Peak Shape Using Generic Gradients with C18 Selectivity	2–7
Hypersil GOLD C8 Enhanced Resolution, Efficiency, Sensitivity and Speed	8–9
Hypersil GOLD C4 Low Hydrophobicity Columns for Less Retention	10
Hypersil GOLD aQ Enhanced Retention and Resolution of Polar Analytes	11–12
Hypersil GOLD PFP Unique Selectivity with Perfluorinated Columns	13–14
Hypersil GOLD CN Cyano Columns for Reversed and Normal Phase Separations	15–16
Hypersil GOLD Phenyl Excellent Retention and Unique Selectivity for Aromatic Analytes	17–18
Hypersil GOLD Amino Highly Versatile Aminopropyl Stationary Phase	19
Hypersil GOLD AX Separation of Anionic Species and Polar Molecules	20
Hypersil GOLD SAX Quarternary Amine Strong Anion Exchange Column, Designed for Aqueous Mobile Phase	21
Hypersil GOLD Silica Excellent Peak Shape in Normal Phase Chromatography	22
Hypersil GOLD HILIC Enhanced Retention of Polar and Hydrophilic Analytes	23
Hypersil GOLD 1.9 μm Small Particles to Improve Speed and Efficiency	24–26
Hardware Solutions Hardware Solutions for High Throughput Screening, Capillary and Preparative Chromatography	27
Column Protection Extend Column Lifetime and Improve Performance	28
Ordering Information	29–32

Outstanding peak shape using generic gradients with C18 selectivity


Hypersil GOLD columns are based on highly pure silica and a novel proprietary derivatization and endcapping procedure using alkyl chain chemistry. This gives:

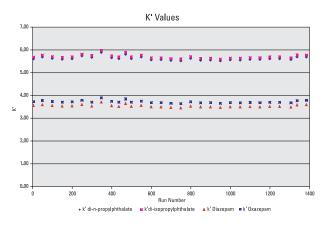
- Significant reduction in peak tailing while retaining C18 (USP L1) selectivity
- Excellent resolution, efficiency and sensitivity
- Confidence in the accuracy and quality of analytical data

Enhanced Resolution

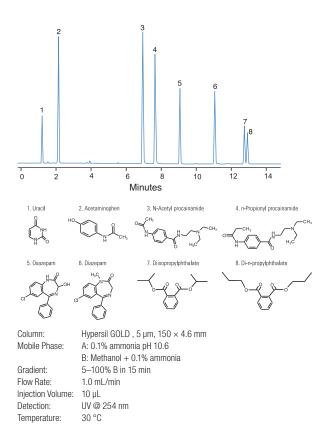
Robust assay development requires a clear definition of resolution expectations. Narrow symmetrical chromatographic peaks ensure that optimum resolution is achieved. Obtaining narrow peak widths is especially challenging for basic pharmaceutical compounds. The reduced silanol activity on Hypersil GOLD columns reduces tailing for basic analytes, thus improving resolution.

Hypersil GOLD columns provide excellent resolution between critical pairs, aiding separation of closely related species.

Improved Sensitivity

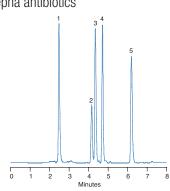

Outstanding peak shape results in greater sensitivity. When peaks exhibit tailing, peak height is reduced, therefore compromising the sensitivity of the analysis. The highly symmetrical peaks provided by Hypersil GOLD columns enhance peak height and allow for optimised peak integration calculations. This can be particularly critical when low concentrations of an analyte are present, for example in an impurity assay.

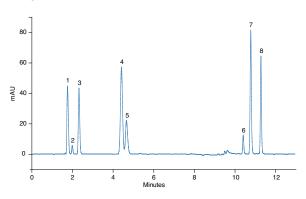
Reproducibility


Our Hypersil GOLD columns are exceptionally reproducible for reliable chromatography, column after column. This allows the user to be confident that assays developed with Hypersil GOLD columns will be robust and stable for the life of the assay, making them an ideal choice for new method development.

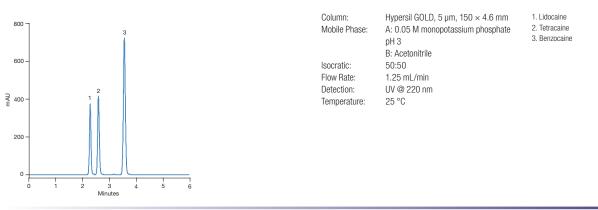
pH Stability

Our Hypersil GOLD columns are well suited to extended pH applications and have been shown to produce robust assays at high pH. At low pH, excellent column stability and reproducibility are illustrated over 1500 injections at pH 1.8.

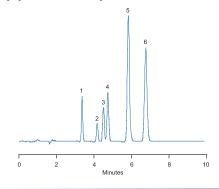



High pH stability assay (pH 10.6) of Hypersil GOLD columns.

Pharmaceutical Cepha antibiotics


Column: Mobile Phase:	Hypersil GOLD, 5 µm, 150 × 4.6 mm A: 0.1% acetic acid B: Acetonitrile	 Cefadroxil Cefaclor Cephalexin
Gradient: Flow Rate:	20–70% B in 10 mins 1 mL/min	4. Cephradine 5. Cefazolin
Detection: Temperature:	UV @ 254 nm 25 °C	

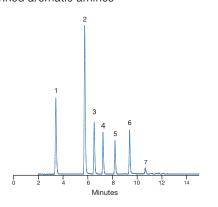
Cough/cold formulation


Column: Mobile Phase:	Hypersil GOLD, 5 µr A: 20 mM ammoniu B: Methanol	m, $150 \times 4.6 \text{ mm}$ im formate at pH 3.0	 4-Amino phenol (chlorpheniramine) maleate Phenylephrine
Gradient:	Time (min) 0 5 10	% B 10 10 70	 Acetaminophen Saccharin Impurity from 4-Amino phenol 4-Nitro phenol Chlorpheniramine
Flow Rate: Detection: Temperature:	1.5 mL/min UV @ 270 nm 25 °C		

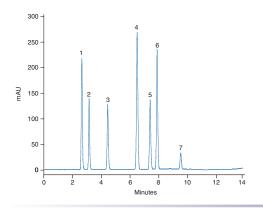
Anaesthetics

Environmental

Polycyclic aromatic hydrocarbons


Column: Mobile Phase: Isocratic: Flow Rate: Detection: Temperature:

Hypersil GOLD, 5 μ m, 150 \times 4.6 mm A: Methanol B: Water 75:25 1 mL/min UV @ 269 nm 25 °C


1. Naphthalene 2. Fluorene 3. Phenanthrene 4. Anthracene 5. Pyrene

6. Chrysene

Banned aromatic amines

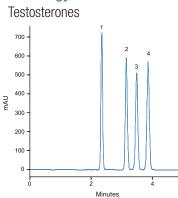
Endocrine disruptors

Hypersil GOLD, 5 $\mu\text{m},\,150\times4.6$ mm Mobile Phase: A: Water B: Acetonitrile 25-70% B in 20 min 1.5 mL/min UV @ 220 nm 25 °C

Column:

Gradient:

Flow Rate:


Detection:

Temperature:

1. Desethyl atrazine 2. Estriol 3. Simazine 4. Atrazine 5. Diuron 6. Bisphenol A

7. Estrone

Toxicology

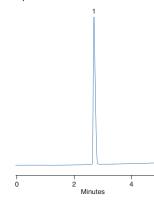
Column:	Н
Mobile Phase:	A
	В
Isocratic:	4
Flow Rate:	1
Detection:	U
Temperature:	2

Hypersil GOLD, 5 µm, 150 × 4.6 mm A: Water B: Acetonitrile 43:57 1 mL/min UV @ 254 nm 25 °C 1. 11-Ketotestosterone

- 2. 19-Nortestosterone
- (nandrolone)
- 3. Testosterone

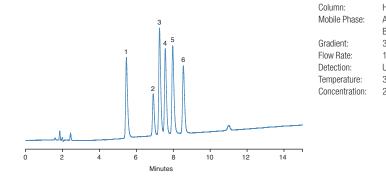
1. Chlorpromazine

1. Doxepin 2. Protriptyline


3. Imipramine

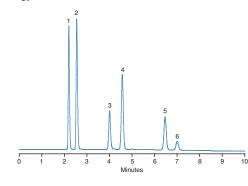
4. Nortriptyline

5. Amitriptyline 6. Trimipramine


4. Epitestosterone

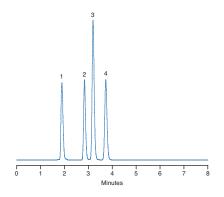
Chlorpromazine

Column: Mobile Phase:	Hypersil GOLD, 5 µm, 50 × 2.1 mm A: 0.1% formic acid B: Acetonitrile + 0.1% formic acid
Gradient:	15–80% B in 5 min
Flow Rate:	1 mL/min
Detection:	UV @ 254 nm
Temperature:	30 °C


Tricyclic antidepressants

Hypersil GOLD, 5 µm, 150 × 4.6 mm A: 0.1% formic acid B: Acetonitrile + 0.1% formic acid 30–50% B in 15 min 1 mL/min UV @ 254 nm 30 °C 2.5 ng/µL

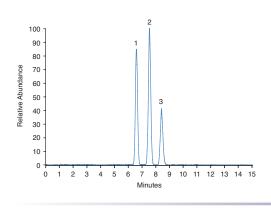
Food Safety


Energy drink additives

Column: H Mobile Phase: A Gradient: 3 Flow Rate: 1 Detection: U Temperature: 2

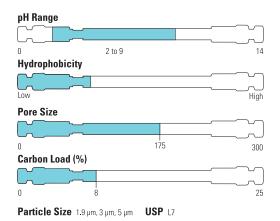
Hypersil GOLD, 5 µm, 150 × 4.6 mm A: 10 mM ammonium acetate at pH 5.0 B: Methanol 30–45% B in 10 min 1 mL/min UV @ 230 nm 25 °C Acesulfame
 Saccharin
 Caffeine
 Benzoic acid
 Sorbic acid
 Aspartame

Coumaric acids


Column: Mobile Phase: Isocratic: Flow Rate: Detection: Temperature:

Hypersil GOLD, 5 µm, 150 × 4.6 mm A: 0.1% formic acid B: Acetonitrile 70:30 1 mL/min UV @ 270 nm 40 °C 1. Uracil 2. p-Coumaric Acid 3. m-Coumaric Acid 4. o-Coumaric Acid

δ-Tocopherol
 γ-Tocopherol


3. α-Tocopherol

Tocopherols

Column: Mobile Phase:	Hypersil GOLD, 5 µm, 150 × 4.6 mm A: Water
	B: Methanol
Isocratic:	5:95
Flow Rate:	1 mL/min
Detection:	-ESI
Temperature:	30 °C

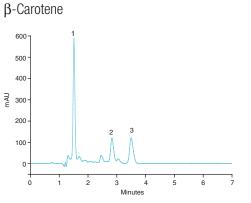
Hypersil GOLD C8 Enhanced resolution, efficiency, sensitivity and speed

- Analytes of medium hydrophobicity
- When a less hydrophobic phase is required to obtain adequate retention

Similar Selectivity but Less Retention than C18

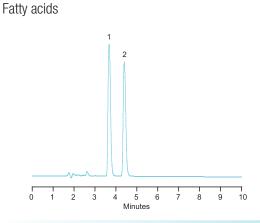
Hypersil GOLD C8 media provides similar selectivity to C18 with a predictable elution order, but less retention. This feature is is particularly useful where lower hydrophobicity is needed in order to successfully retain compounds of of interest. Hypersil GOLD C8 columns are recommended for analytes of medium hydrophobicity or when a less hydrophobic phase is required to obtain adequate retention.

Faster Separations


Hypersil GOLD C8 columns can provide improved throughput of analysis over that of a C18 alkyl chain chemistry. Hydrophobic interactions are reduced, allowing compounds to elute quicker from the column.

Excellent Peak Shapes with High Efficiency and Outstanding Sensitivity

Hypersil GOLD C8 columns provide very symmetrical peak shapes while also improving capabilities such as speed of analysis, efficiency and sensitivity.



Food Safety

Column: Mobile Phase: Flow Rate: Detection: Temperature: Hypersil GOLD C8, 5 µm, 150 × 4.6 mm Methanol 1.5 mL/min UV @ 450 nm 25 °C 1. Lutein 2. Lycopene

3. β-Carotene

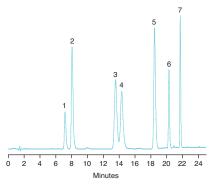
 Column:
 Hypersil GOLD C8, 5 μm, 150 × 4.6 mm

 Mobile Phase:
 A: 0.1% formic acid

 B: Acetonitrile
 Isocratic:

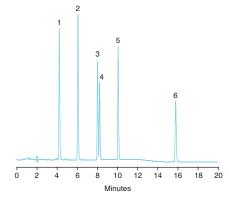
 Isocratic:
 15:85

 Flow Rate:
 1 mL/min


 Detection:
 UV @ 200 nm

 Temperature:
 25 °C

1. Linolenic Acid 2. Linoleic Acid


Environmental

Triazines and uron herbicides

Column: Hypersil GOLD C8, 5 μ m, 150 \times 4.6 mm 1. Simazine 2. Monuron Mobile Phase: A: Water 3. Chlorotoluron B: Acetonitrile 4. Atrazine % B Gradient: Time (min) 5. Diuron 0 20 6. Propazine 15 23 7. Linuron 25 75 Flow Rate: 1.5 mL/min Detection: UV @ 240 nm Temperature: 25 °C

Phthalates

Column: Hy Mobile Phase: A: B: Gradient: 60 Flow Rate: 1 n Detection: UV Temperature: 25

Hypersil GOLD C8, 5 μ m, 150 × 4.6 mm A: Water B: Acetonitrile 60–90% B in 10 min; hold 10 min 1 mL/min UV @ 254 nm 25 °C

1. Dimethyl phthalate

2. Diethyl phthalate

3. Dipropyl phthalate

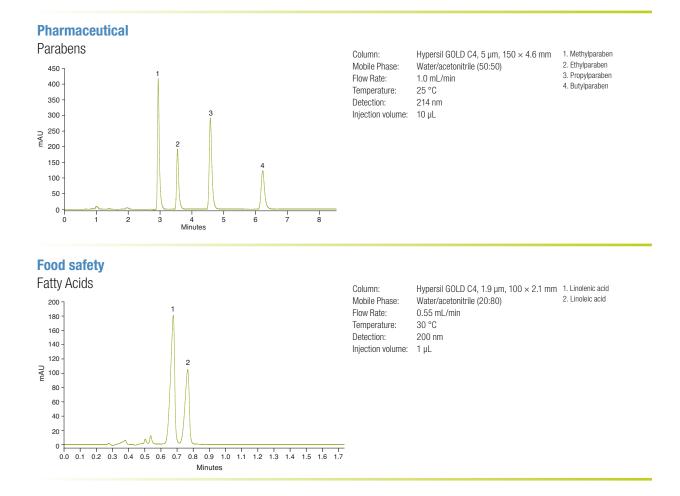
4. Diisopropyl phthalate 5. Di-n-butyl phthalate

6. Di-n-octyl phthalate

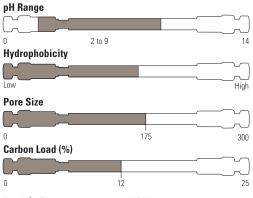
Hypersil GOLD C4 Low hydrophobicity columns for less retention

pH Range 0 2 to 8 14 Hydrophobicity Low High Pore Size 0 175 300 Carbon Load (%) 0 5 25 Particle Size 1.9 µm, 3 µm, 5 µm USP L26

Lower Hydrophobicity for Faster Separations


Hypersil GOLD C4 columns provide similar selectivity to C18 and C8 columns but with less retention. The shorter chain length and lower hydrophobic character make C4 a particularly useful stationary phase for the retention and separation of hydrophobic polypeptides and proteins.

• Analytes with high hydrophobicity


• When a less hydrophobic phase is required to obtain adequate retention

Excellent Peak Shape, Showing High Efficiency and Outstanding Sensitivity

Based on the same highly pure silica, Hypersil GOLD C4 columns deliver excellent peak shape. For high speed, high efficiency separations, Hypersil GOLD C4 columns are available with 1.9 μ m particle size.

Hypersil GOLD aQ Enhanced retention and resolution of polar analytes

Particle Size 1.9 μm, 3 μm, 5 μm USP L1

Retention and Resolution of Polar Analytes

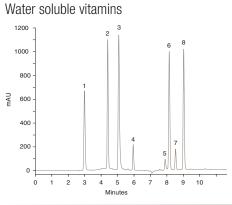
Because Hypersil GOLD aQ columns are packed with a polar endcapped C18 phase, they offer superior retention of polar compounds. Dispersive interactions are the primary mechanism of retention with alkyl chain bonded phases. The polar functional group used to endcap Hypersil GOLD aQ media provides an additional controlled interaction mechanism by which polar compounds can be retained and resolved. The resulting optimized peak shape provides excellent resolution sensitivity and efficiency, making Hypersil GOLD aQ columns ideal for the quantitative analysis of trace levels of polar analytes.

Polar Endcapped C18 Stationary Phase for Alternative Selectivity

The additional interaction mechanism often provides selectivity differences over the traditional alkyl chain chemistries, and offers a solution for the separation of polar compounds which exhibit insufficient retention on pure alkyl chain phases under typical reversed phase mobile phase conditions.

- Analysis of water soluble vitamins and organic acids
- Use with highly aqueous mobile phase

Ideal for Highly Aqueous Mobile Phases


The wettability of reversed phase media can be increased by the introduction of polar functional groups. The polar endcapping of Hypersil GOLD aQ media also makes it usable in 100% aqueous mobile phases without the risk of loss of performance or poor stability.

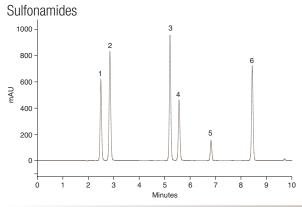
Excellent Peak Shapes

Hypersil GOLD aQ silica ensures optimized peak shape, resolution, sensitivity and efficiency. Hypersil GOLD aQ columns provide only controlled secondary interactions to ensure excellent peak shape for all analyte types, making them ideal for the quantitative analysis of trace levels of polar analytes.

Hypersil GOLD aQ

Food Safety

oolumn.	Tryperail GOL
Mobile Phase:	A: 50 mM m
	pH 3.5
	B: Methanol
Gradient:	0–100% B in
Flow Rate:	1 mL/min
Detection:	UV @ 205 nr


Column

Hypersil GOLD aQ, 5 $\mu m,\,150 \times 4.6~mm$ ionopotassium phosphate n 15 min m

1. Vitamin B1 (thiamine) 2. Vitamin B6 (pyridoxine) 3. Vitamin B3 (nicotinamde) 4. Vitamin B5 (pantothenic acid) 5. Folic Acid 6. Vitamin B12 (cyanocobalamin) 7. Vitamin H (biotin)

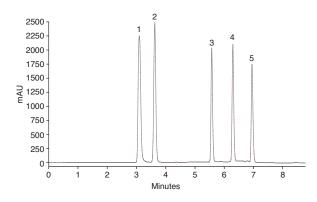
8. Vitamin B2 (riboflavin)

Pharmaceutical

Column: Mobile Phase:	
Gradient: 1 Flow Rate:	
Detection:	
Temperature:	

Hypersil GOLD aQ, 5 $\mu\text{m},\,150\times4.6$ mm A: 0.1% formic acid B: Acetonitrile + 0.1% formic acid 0-100% B in 15 min 1.0 mL/min UV @ 270 nm 30 °C

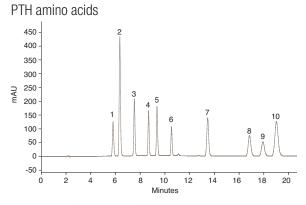
1. Sulfaguanidine 2. Sulfanilamide


3. Sulfathiazole

4. Sulfamerazine

5. Sulfamonomethoxine

6. Sulfaquinoxaline


Xanthines

Column: Mobile Phase: Gradient: Flow Rate: Detection: Temperature:

Hypersil GOLD aQ, 5 μ m, 150 \times 4.6 mm 1. Hypoxanthine 2. Xanthine A: 50 mM monosodium phosphate pH 2.5 3. Theobromine B: Methanol 4. Theophylline 1-100% B in 10 min 5. Caffeine 1 mL/min UV @ 254 nm 30 °C

Biochemical

Column: Mobile Phase:	Hypersil GOLD, 5 µm, A: 0.1% tetrahydrofura triethylamine in water B: 0.1% tetrahydrofura triethylamine in aceton	n + 0.015%	1. 2. 3. 4. 5.
Gradient:	Time (min) 0 2 7 20	% B 17 20	6. 7. 8. 9. 10.
Flow Rate: Detection: Temperature:	1 mL/min UV @ 269 nm 25 °C		

Serine

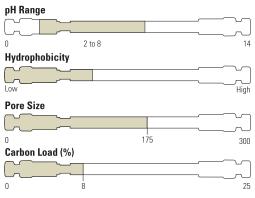
Asparagine

Aspartic acid

Glutamic acid

Alanine

Tyrosine


Methionine

Tryptophan

Phenylanaline

. Leucine

Hypersil GOLD PFP Unique selectivity with perfluorinated columns

Particle Size 1.9 µm, 3 µm, 5 µm USP L43

Alternative Selectivity to C18 with Excellent Peak Shape and Sensitivity

Hypersil GOLD PFP (pentafluorophenyl) columns build on the performance of Hypersil GOLD silica by providing excellent peak shapes while also offering alternative selectivity in reversed phase chromatography compared to alkyl chain phases. The Hypersil GOLD PFP manufacturing process provides improvements in speed of analysis, peak shape and sensitivity over other fluorinated phases.

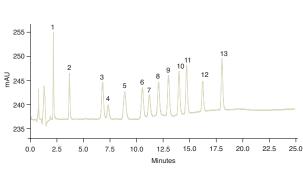
Extra Retention for Halogenated Species

Introduction of fluorine groups into the stationary phase causes significant changes in solute-stationary phase interactions. This can lead to extra retention and selectivity for positional isomers of halogenated compounds.

- Analyzing difficult to resolve mixtures of halogenated compounds
- Non-halogenated polar aromatic compounds
- Analysis of complex taxane samples

Unique Selectivity for Non-Halogenated Polar Compounds

Hypersil GOLD PFP Columns are also well suited to the selective analysis of non-halogenated compounds, in particular polar compounds containing hydroxyl, carboxyl, nitro, or other polar groups. High selectivity is often most apparent when the functional groups are located on an aromatic or other rigid ring system.

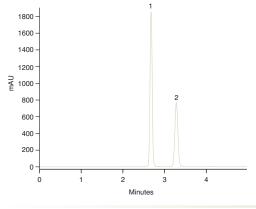


Hypersil GOLD PFP columns are particularly suited to the analysis of compounds containing substituted aromatic rings. This is because the fluorine atoms around the phenyl ring enhance pi-pi interactions increasing retention and selectivity.

Hypersil GOLD PFP

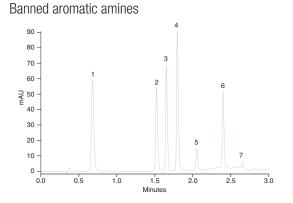
Pharmaceutical

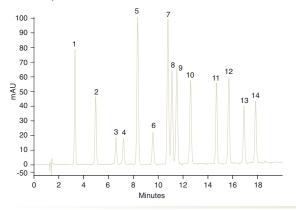

Column: Mobile Phase:	Hypersil GOLD PFP, 5 µm, 150 × 4.6 mm A: Water		
	B: Methanol/acetonitr	B: Methanol/acetonitrile (7:93)	
Gradient:	Time (min)	% B	
	0	35	
	7	35	
	25	58	
Flow Rate:	1.5 mL/min		
Detection:	UV @ 220 nm		


10 -Deacetyl baccatin
 Baccatin III
 10 -Deacetyl-7-xylosyl taxol B
 Taxinine M
 10 -Deacetyl-7-xylosyl taxol
 10 -Deacetyl-7-xylosyl taxol C
 7-Xylosyl taxol
 Cephalomanine
 10.10-Deacetyl-7epitaxol
 11.Pacitaxol
 12.Taxol C

13.7-Epitaxol

1. Fluorocytosine

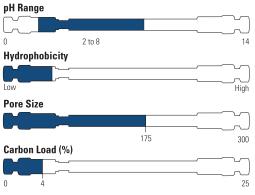

2. Fluorouracil


Hypersil GOLD PFP, 5 μm, 150 × 4.6 mm
Water + 0.1% tetrahydrofuran
1.0 mL/min
30 °C
UV @ 220 nm

Environmental

Column:	Hypersil GOLD PFP, 1.9 µm, 50 × 2.1 mm	1. 2,4-Diaminotoluene
Mobile Phase:	A: 25 mM ammonium acetate pH 5.0	2. o-Toluidine
	B: Acetonitrile	3. 4,4-Oxydianiline
Gradient:	10-100% B in 3 mins	4. 2-Methoxy-5-Methylaniline
Flow Rate:	0.5 mL/min	5. 2,4,5-Trimethylaniline
Temperature:	40 °C	 4,4-Methylene-bis (2-chloroaniline)
Detection:	UV @ 254 nm (2 µL flow cell)	7. Impurity from Analyte No. 6
Injection Volume:	0.5 μL	

Phenolic positional isomers


Column: Mobile Phase:	Hypersil GOLD PFP, 5 $\mu m,150\times4.6$ mm A: Water + 0.1% formic acid	 3,4-Dimethoxyphenol 2,6-Dimethoxyphenol
Gradient: Flow Rate: Temperature: Detection: Injection Volume:	A: Water + 0.1% formic acid B: Acetonitrile + 1.0% formic acid 15-45% B in 20 mins 1.5 mL/min 25 °C UV @ 270 nm 5 μm	3. 2,6-Difluorophenol 4. 3,5-Dimethoxyphenol 5. 2,4-Difluorophenol 6. 2,3-Difluorophenol 7. 3,4-Difluorophenol 8. 3,5-Dimethoxyphenol 9. 2,6-Dimethoxyphenol 10.2,6-Dichlorophenol 11.4-Chloro-3-Methylphenol
		12.3,4-Dichlorophenol

13.4-Chloro-2-Methylphenol

14.3,5-Dichlorophenol

14

Hypersil GOLD CN Cyano columns for reversed and normal phase separations

- Steroids and polyphenols in reversed phase
- Surfactants and other polar species in normal phase

Particle Size 1.9 μm, 3 μm, 5 μm USP L10

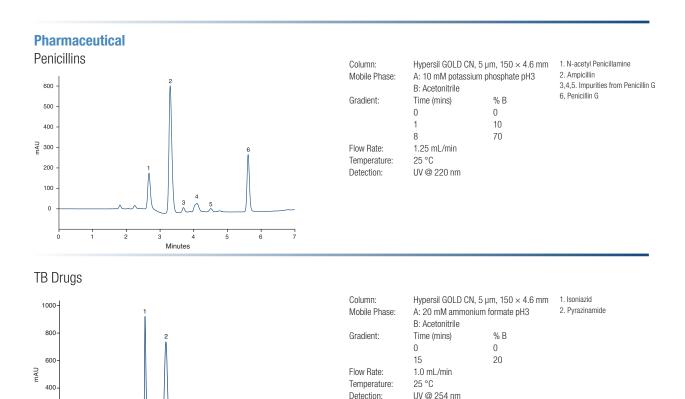
200

0

2

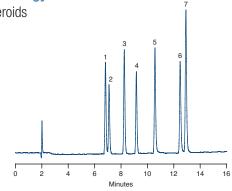
1

3

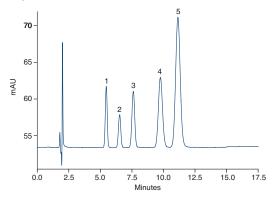

Minutes

4

5


Alternative Selectivity with Lower Hydrophobicity than C18

Hypersil GOLD CN columns offer alternative selectivity in reversed phase chromatography with lower hydrophobicity compared to C18 alkyl chain phases. Hypersil GOLD CN columns can also be used in normal phase chromatography, where they offer less retention and different selectivity compared to silica columns.

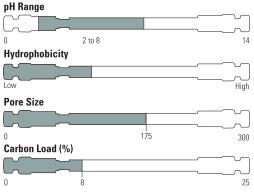

Hypersil GOLD CN

Toxicology Steroids

Column: Mobile Phase:	Hypersil GOLD CN, A: Water B: Acetonitrile	5 μm, 150 × 4.6 mm	1. Hydrocortisone 2. Cortisone 3. Corticosterone
Gradient:	Time (mins) 0 15	% B 10 50	 4. 11-α Hydroxprogesterone 5. 17-α Hydroxprogesterone 6. Progesterone 7. Deoxycorticosterone
Flow Rate: Temperature: Detection:	1.5 mL/min 25 °C UV @ 254 nm		

Co	lumn:	Hy
Ма	bile Phase:	A:
		B:
lso	cratic:	95
Flo	w Rate:	1.5
Ter	nperature:	25
De	tection:	UV

 ypersil GOLD CN, 5 μm, 150 × 4.6 mm
 1. 4-Fluorobenzoic


 : 25 mM potassium phosphate pH2
 2. ο-Toluic Acid

 : Methanol
 3. p-Toluic Acid

 5% A: 5% B
 4. 2,4,6-Trimethylbenzoic Acid

 5. mL/min
 5.9
 5 mL/min °C @ 230 nm

Hypersil GOLD Phenyl Excellent retention and unique selectivity for aromatic analytes

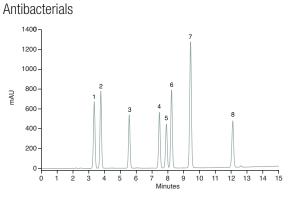
Particle Size 1.9 μm, 3 μm, 5 μm USP L11

Alternative Selectivity for Aromatic and Moderately Polar Analytes

Hypersil GOLD Phenyl reversed phase HPLC columns exhibit alternative selectivity to alkyl chain columns, particularly for aromatic and moderately polar analytes.

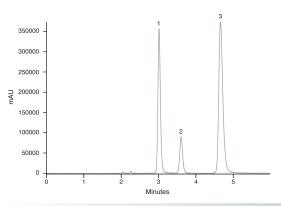
Enhanced Pi-Pi Interactions with Aromatics

Many phenyl phases use a propyl (C3) linker between the silica and the phenyl ring. The Hypersil GOLD Phenyl bonded phase contains a butyl (C4) linker which allows for superior alignment of the phenyl ring with aromatic molecules, enhancing pi-pi interactions and therefore their retention.


- Analyte mixtures with varying polarity and aromaticity
- Where alternative selectivity to C18 is required

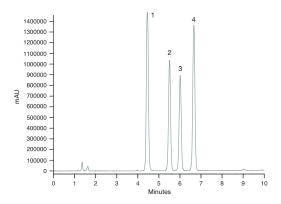
Moderate Hydrophobicity

The C4 linker also provides the stationary phase with moderate hydrophobicity, making it ideal for the separation of analyte mixtures with varying polarity and aromaticity.


Hypersil GOLD Phenyl

Pharmaceutical

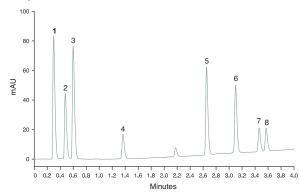
Column:	Hypersil GOLD Phenyl, 5 µm,	1. Carbadox
	150 × 4.6 mm	2. Thiamphenicol
Mobile Phase:	A: 20 mM potassiumn phosphate pH 2.5	3. Furazolidone
	B: Acetonitrile	4. Oxolinic Acid
Gradient:	20–50% B in 15 mins	 Sulfadimethoxine Sulfaguinoxaline
Flow Rate:	1 mL/min	7. Nalidixic Acid
Temperature:	30 °C	8. Piromidic Acid
Injection Volume:	5 μL	
Detection:	UV @ 225 nm	


Antacids

Column:	Hypersil GOLD Phenyl, 5 µm,	1.1
Mobile Phase:	150 × 4.6 mm 20 mM potassium phosphate pH 7.0/ acetonitrile (80/20)	2. 3.
Flow Rate: Temperature: Injection Volume:	1 mL/min 25 °C 5 μL UV @ 254 nm	

. Famotidine . Cimetidine . Ranitidine

Veterinary drug coccidiostats

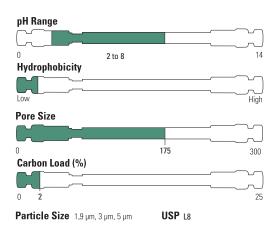


Column:	Hype
	150
Mobile Phase:	A: W
	B: M
Gradient:	40-7
Flow Rate:	1 mL
Temperature:	25 °(
Injection Volume:	5μL
Detection:	UV @

ersil GOLD Phenyl, 5 µm, imes 4.6 mm /ater 1ethanol 70% B in 10 mins L/min °C @ 260 nm

1. 4-amino-3,5-dinitrobenzamide 2. Zoalene (3,5-nitro-o-toluamide 3. Nitromid (3,5-dinitrobenzamide) 4. Ethopabate

Antidepressants

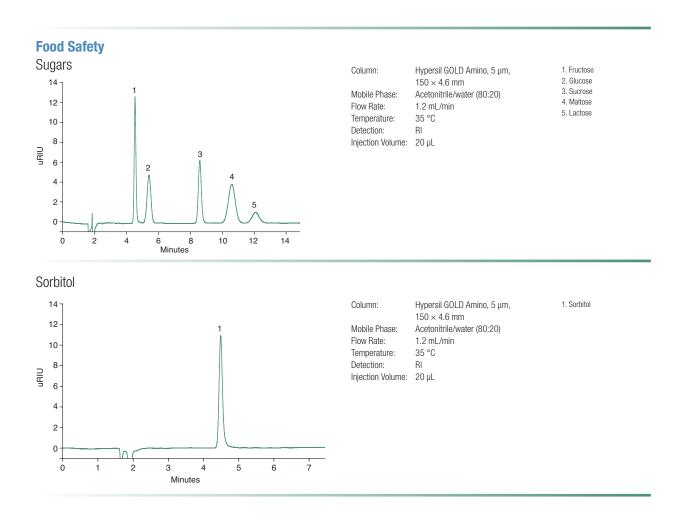


Column:	Hypersil GOLD Phenyl, 1.9 µm, 50 × 2.1 mm	1. Uracil 2. Aceta
Mobile Phase:	A: 0.1% formic acid B: 0.1% formic acid in acetonitrile	3. p-Hyo 4. o-Hyo
Gradient:	10–60% B in 3.4 min 60–90% B in 0.24 min	5. Oxaze 6. Diaze 7. Di-iso
Flow Rate: Temperature: Injection Volume: Detection:	0.5 mL/min 60 °C 0.7 μL UV @ 225 nm and 254 nm	8. Di-n-

cil

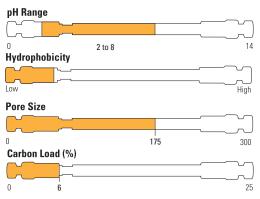
- taminophen
- ydroxybenzoic acid ydroxybenzoic acid
- zepam
- zepam
- . sopropyl phthalate
- n-propyl phthalate

Hypersil GOLD Amino Highly versatile aminopropyl stationary phase


Outstanding Peak Shape and Sensitivity

Based on the same highly pure silica backbone, Hypersil GOLD Amino columns offer improved peak shape over type A silica columns. For high speed, high efficiency separations, Hypersil GOLD Amino columns are available with 1.9 µm particle size.

- Retains anions and organic acids in weak anion exchange
- Excellent for carbohydrate analysis in HILIC


Excellent Chromatographic Properties in Four Modes: Weak Anion Exchange, Reversed Phase, HILIC and Normal Phase

Hypersil GOLD Amino columns can be used with common buffers and an organic modifier as a weak ion exchange material for the analysis of anions and organic acids. When used under normal phase conditions, Hypersil GOLD Amino columns offer an alternative selectivity to silica. Hypersil GOLD Amino columns excel for carbohydrate analysis when used in HILIC mode.

Hypersil GOLD AX

Separation of anionic species and polar molecules

- Smaller proteins and peptides
- Anionic species
- Polar molecules

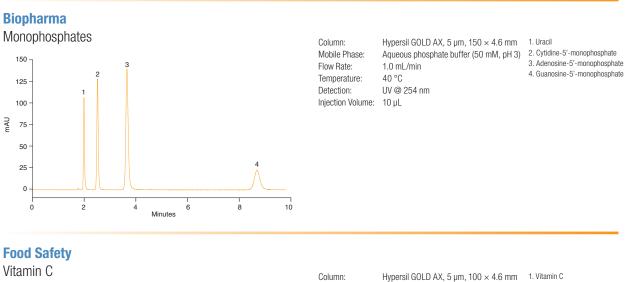
Particle Size 1.9 µm, 3 µm, 5 µm

Weak Anion Exchange Phase

Hypersil GOLD AX columns utilise a novel polymeric amine ligand bonded to highly pure base deactivated silica. The silica substrate brings higher efficiency than polymer based ion exchange columns.

Suitable for HILIC

Hypersil GOLD AX columns are particularly suited to the analysis of polar compounds in HILIC applications. For high speed, high efficiency separations, Hypersil GOLD AX columns are available with 1.9 μm particle size.

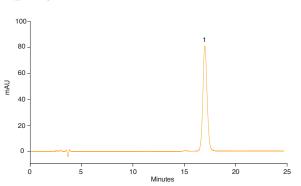

100 mM ammonium acetate pH 6.8/

acetonitrile (30:70)

0.5 mL/min

UV @ 240 nm

30 °C



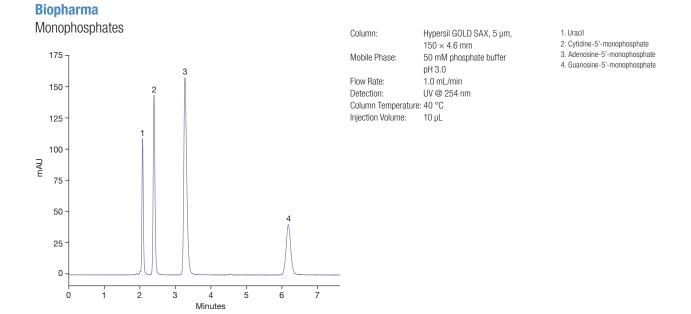
Mobile Phase:

Flow Rate:

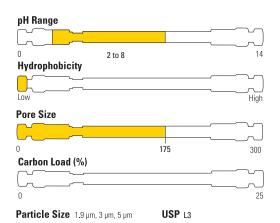
Temperature: Detection:

Injection Volume: 50 µL

Hypersil GOLD SAX Quaternary amine strong anion exchange column

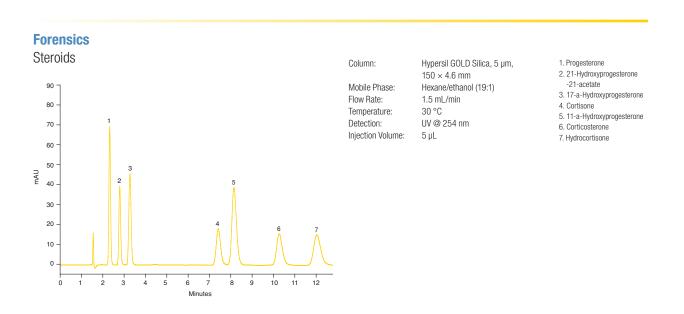

- Smaller organic molecules
- lonic species

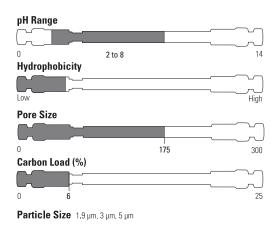
High Stability to Aqueous Mobile Phase


The Hypersil GOLD SAX stationary phase utilises a highly stable quaternary amine strong anion exchange ligand bonded to highly pure silica. Hypersil GOLD SAX columns are suited to the analysis of smaller organic molecules such as nucleotides and organic acids using aqueous and low pH mobile phases.

Outstanding Peak Shape and Sensitivity

Based on the same highly pure silica backbone, Hypersil GOLD SAX columns offer improved peak shape over type A silica columns. For high speed, high efficiency separations, Hypersil GOLD SAX columns are available with 1.9 µm particle size.

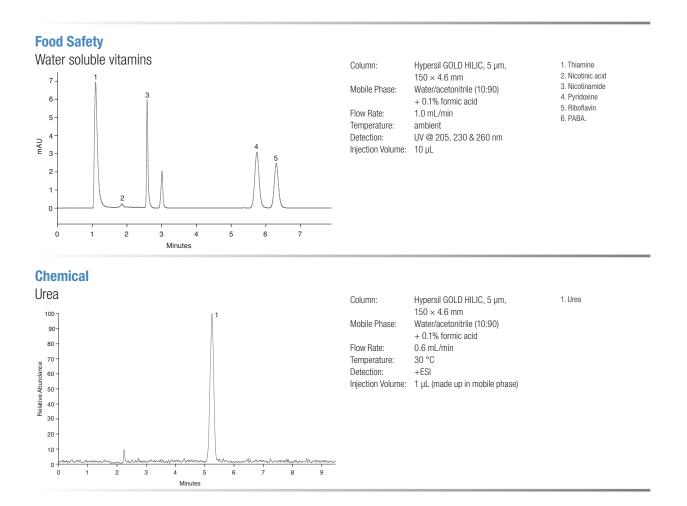

Hypersil GOLD Silica Excellent peak shape in normal phase chromatography


- Steroids in normal phase
- · Polar analytes in HILIC

Outstanding Peak Shape and Sensitivity

Unbonded, highly pure base deactivated silica media that is the backbone of the Hypersil GOLD range of columns. Hypersil GOLD Silica columns are a powerful and efficient tool for the chromatography of non-polar and moderately polar organic compounds by normal phase chromatography. For high speed, high efficiency separations, Hypersil GOLD Silica columns are available with 1.9 µm particle size.

Hypersil GOLD HILIC Enhanced retention of polar and hydrophilic analytes


Improved Sensitivity with MS Detection

The highly organic mobile phases containing low salt levels used for HILIC, make Hypersil GOLD HILIC columns ideal for use with electrospray mass spectroscopy.

- Polar and hydrophilic compounds
- Carbohydrates
- Enhanced sensitivity in MS

Enhanced Retention of Polar and Hydrophilic Analytes

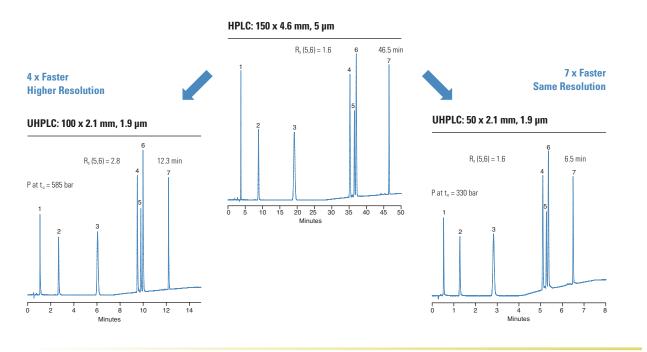
Hydrophilic interaction liquid chromatography (HILIC) is an increasingly popular technique offering complementary selectivity to reversed-phase. With the ability to retain highly polar and hydrophilic compounds, Hypersil GOLD HILIC columns have been developed to aid the analysis of compounds that are traditionally difficult to retain using conventional C18 columns. In HILIC, by incorporating water in the highly organic mobile phase, an adsorbed water-rich layer is formed on the polar stationary phase surface into which analyte molecules partition. Retention is governed by dipole-dipole interactions and hydrogen bonding mechanisms.

Hypersil GOLD 1.9 µm Small particles to improve speed and efficiency

The Power of 1.9 µm Particles

 $1.9 \,\mu$ m particles give higher efficiency than $3 \,\mu$ m or $5 \,\mu$ m particles and this efficiency is delivered over a greater range of optimum linear velocity. This makes it possible to operate at higher flow rates without losing performance. Because shorter columns packed with $1.9 \,\mu$ m particles give equivalent efficiency to longer columns packed with $5 \,\mu$ m particles, faster analysis and solvent savings for the chromatographer become a reality.

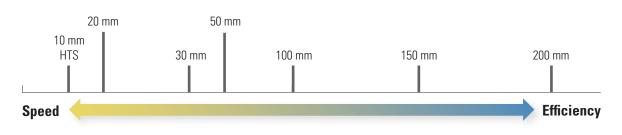
Three Tips for Method Transfer


- 1. To maintain an equivalent separation when transferring a method it is important to keep the reduced linear velocity constant between the original and new method.
- 2. Sub-2 µm based methods are most often transferred to smaller volume columns, so the same injection volume will take up a larger proportion of the new column, possibly leading to band broadening. It is therefore important to scale down the injection volume to match the change in column volume.
- Geometrical transfer of the gradient requires calculation of the number of column volumes of mobile phase in each segment (time interval) of the gradient in the original method to ensure that the new calculated gradient takes place over the same number of column volumes, for the new column.

Pressure Rating of Hypersil GOLD 1.9 µm Columns

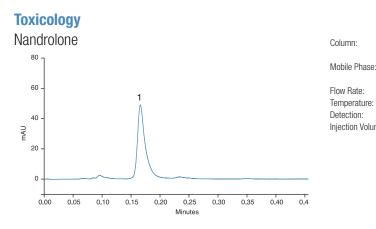
Column Hardware	Pressure Rating
Analytical columns	1250 bar/18,000 psi
Capillary/nano columns	400 bar/6,000 psi
Javelin HTS columns	400 bar/6,000 psi

HPLC Method Development Calculator www.thermoscientific.com/crc



Transferring a method using these tips can give results as shown below for the separation of Ibuprofen and impurities.

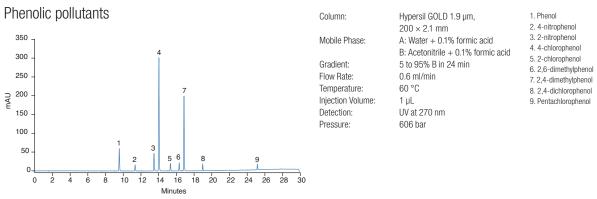
Which 1.9 µm Column?


We offer an extensive range of columns packed with 1.9 μ m particles to suit the full variety of application needs. The choice of column will depend upon the requirement of the analysis.

- Speed: choose from 10 mm Javelin HTS, 20, 30 or 50 mm long analytical columns
- Efficiency: choose a longer column (for example 150 or 200 mm)
- Low backpressure: Hypersil GOLD 1.9 μm media is packed into a high pressure column 50 mm long and 4.6 mm internal diameter. Traditionally, a 1.9 μm column is used on UHPLC instruments. However, by producing less backpressure, this new wider column is suitable for users of conventional systems where pressure limits are often in the 6000 psi/400 bar region, ensuring fast chromatography without the need for extensive instrument optimization.

Hypersil GOLD 1.9 µm Javelin HTS Columns for Speed

Hypersil GOLD 1.9 µm Javelin HTS columns take fast LC to the extreme. These short 10 mm columns enable analysis times as fast as 8 seconds to be achieved. The use of ultra-low dead volume, direct connect Javelin hardware also minimizes dispersion.



1. Nandrolone (19-Nortestosterone)

200 mm Column for Efficiency

The 1.9 µm particles used in Hypersil GOLD columns give less backpressure than 1.8 or 1.7 µm, permitting the use of longer columns for greater efficiency.

Environmental

System Considerations

With 1.9 µm particles, analyses can be performed with a high linear velocity through the column without loss in performance, provided the LC system is optimized to operate under these conditions. In order to produce fast, efficient chromatography, all system components for the assay should also be considered. Modern ultra high pressure liquid chromatography (UHPLC) instruments, including the Thermo Scientific[™] Vanquish[™] UHPLC system, will take account of these factors.

There are three major system considerations to remember when using short columns packed with 1.9 µm particles.

- 1. The system volume (connecting tubing ID and length, injection volume, UV detector flow cell volume) must be minimized
- 2. The detector time constant and sampling rate need to be carefully selected
- 3. When running fast gradients pump delay volume needs to be minimal.

Hardware Solutions

Hardware solutions for high throughput screening, capillary and preparative chromatography

Hypersil GOLD columns are available in particle sizes and column designs to meet all separation needs, including improved resolution, enhanced sensitivity, and faster analyses. With particle sizes from 1.9 μ m to 12 μ m, Hypersil GOLD columns offer chromatographic solutions with consistent separations and performance. Specialized hardware includes:

- Preparative columns
- Thermo Scientific[™] Javelin[™] HTS direct-connection columns
- Guard columns for column protection

Preparative Columns

Analytical methods may require scale up to preparative sizes to isolate and purify compounds from mixtures. In choosing the best column and packing material for your preparative application, consider:

- Selectivity
- Loadability of the media
- Column dimensions

We have established a strong reputation for the manufacture and supply of high quality preparative columns, designed to give the same levels of performance and reproducibility as our popular analytical columns. Scale up is easiest when starting from an analytical column packed with smaller particle size media offering the same selectivity as the larger particle size preparative media. Hypersil GOLD phases are offered in various sizes to complement lab scale operations and facilitate the scale up to preparative chromatography. Contact us for ordering details on Hypersil GOLD preparative columns.

Columns for High Throughput Screening

Javelin HTS columns are specifically designed for high throughput applications. Using finger tight fittings and low dead volume hardware to minimise band broadening, these columns are ideal for ballistic gradients, providing enough retention and sensitivity for very fast assays. Javelin HTS columns are available in multipacks to provide a cost effective solution.

Javelin HTS Column

Description	Particle Size	Length (mm)	ID (mm)	Part Number
Hypersil GOLD Javelin HTS Column (3/pk)	1.9	10	2.1	11808901
	5	20	4.0	10157354

Column Protection Extend column lifetime and improve performance

Guard Columns

Drop-in guard cartridges and holders offer convenience, economy, and effective protection for extending analytical column lifetimes. The 10 mm design offers maximum protection with minimal increase in retention. Hypersil GOLD drop-in guard cartridges are provided in packs of 4 each.

UHPLC Filter

Replaceable 0.2 µm Thermo Scientific UHPLC filter cartridges can be used to protect Hypersil GOLD 1.9 µm columns against particulate contamination, extending column lifetime. It's low dead volume design maintains chromatographic performance without degrading peak shape and causes minimal efficiency loss through dispersion. The UHPLC filter adds minimal increase in backpressure and so can be fitted to any length column.

UNIGUARD Guard Cartridge Holder

Description	Length (mm)	ID (mm)	Part Number
UNIGUARD Guard Cartridge Holder	10	1.0	10762567
		2.1	10776714
		3.0	10776714
		4.0/4.6	10602864
Description	ID (mm)		Part Number
UHPLC Filter Holder			10775706
UHPLC Filter Cartridge, 0.2 µm (5/pk	.) 2.1		10127594
	1.0		11550944

Ordering Information

Particle Size (µm)	Description	Length (mm)	ID (mm)	Hypersil GOLD	Hypersil GOLD C8	Hypersil GOLD C4
1.9	UHPLC Column	20	2.1	10464613	10658895	-
		30	1.0	10305063	-	-
			2.1	10049142	10044264	-
		50	1.0	10020213	-	-
			2.1	10474783	10664945	10127614
			3.0	10345203	10556845	-
			4.6	10169344	10096024	-
		100	1.0	10715004	10329884	-
			2.1	10734604	10074694	10691396
			3.0	10582465	10442195	-
		150	2.1	10630204	10234864	10391585
		200	2.1	10446503	-	-
3	Drop-in Guard (4/pk)	10	1.0	10608705	10714817	10147884
			2.1	11518270	11598270	10447534
			3.0	10481365	10075814	10157884
			4.0/4.6	11528270	10487694	10610626
	HPLC Column	30	2.1	10394463	-	-
			3.0	-	-	-
			4.6	10764984	-	-
		50	2.1	10424413	10553035	10159534
			3.0	10293183	10558585	-
			4.0	10658825	10715126	-
			4.6	10089282	10543995	-
		100	1.0	10281225	10027464	-
			2.1	10632864	10018912	10037254
			3.0	10304923	10619395	10027504
			4.0	10794546	10202105	-
			4.6	10384323	10774414	10732826
		150	1.0	10704556	-	10199474
			2.1	10121223	10078952	10599735
			3.0	10131383	10312745	10312355
			4.0	10456844	10734766	-
			4.6	10610564	10736144	10261325
5	Drop-in Guard (4/pk)	10	2.1	11538270	10535445	10076694
			3.0	10544085	10259644	10514475
			4.0/4.6	11548270	11508280	10670046
	HPLC Column	30	2.1	10475163	-	-
			3.0	10668825	-	-
			4.6	10008862	-	-
		50	2.1	10611334	10293413	10609585
			3.0	10191523	10764356	-
			4.6	10611524	10690564	10699385
		100	2.1	10140743	10503235	10382865
			3.0	10384723	10261915	10322355
			4.6	10121033	10690754	10699755
		150	2.1	10131033	10203663	10609765
			3.0	10795316	10108874	-
			4.0	10313065	10149494	-
			4.6	10501695	10755783	10486854
		250	2.1	10009102	10765783	10067684
			3.0	10352775	10619405	10548415
			4.0	10506365	10343465	-
			4.6	10543035	10243453	10312635

Particle Size (µm)	Description	Length (mm)	ID (mm)	Hypersil GOLD aQ	Hypersil GOLD PFP	Hypersil GOLD CN
1.9	UHPLC Column	20	2.1	10375203	10670774	-
		30	1.0	-	-	-
			2.1	10324223	10243553	-
		50	1.0	10101723	10465753	-
			2.1	10572635	10661134	10319984
			3.0	10111723	10435943	-
			4.6	10119574	10269504	-
		100	1.0	10621344	10523435	-
			2.1	10582635	10583025	10565885
			3.0	10631344	10531135	-
		150	2.1	10736734	10706354	-
		200	2.1	10486693	10253193	10675325
3	Drop-in Guard (4/pk)	10	1.0	10360905	10486764	10269954
	· · · · /		2.1	11548280	11528290	11588290
			3.0	11558280	10734657	10035844
			4.0/4.6	11568280	10270055	11598290
	HPLC Column	30	2.1	10715793	10485533	10343993
			3.0	10466664	10260995	_
			4.6	-	10444973	_
		50	2.1	10513795	10641904	10069142
		00	3.0	10251235	11952458	_
			4.0	10629955	10537255	_
			4.6	10541105	10521305	_
		100	1.0	10129514	10250665	_
		100	2.1	10190873	10304473	10553225
			3.0	10074313	10473415	10417264
			4.0	10139514	10608425	-
			4.6	10364603	10642864	10746524
		150	1.0	10210655	10559365	10785716
		150	2.1	10572255	10233223	10672864
			3.0	10268944	10229944	10795716
			4.0	10509355	-	-
			4.6	10008902	10774984	10553995
6	Drop in Guard (1/pk)	10	2.1	10783497	10619285	10361105
5	Drop-in Guard (4/pk)	10	3.0	10370905	10535825	10341215
		20	4.0/4.6	11578280	11538290	11508300
	HPLC Column	30	2.1	-	-	
			3.0	-	-	-
		E 0	4.6	-	-	-
		50	2.1	10776153	10131223	10600954
			3.0	10508405	10640536	-
		100	4.6	10662474	-	10652484
		100	2.1	10140593	10620564	10662484
			3.0	10557435	10704756	10231965
			4.6	10150593	10621524	-
		150	2.1	10718063	10724414	10746144
			3.0	10497414	10220815	-
			4.0	-	10418574	-
			4.6	10019382	10068902	10213663
		250	2.1	10161023	10078902	10474983
			3.0	-	-	10027154
			4.0	10056134	10159194	10538585
			4.6	10582065	10141033	10273703

Particle Size (µm)	Description	Length (mm)	ID (mm)	Hypersil GOLD Phenyl	Hypersil GOLD Amino	Hypersil GOLD AX
1.9	UHPLC Column	20	2.1	-	-	-
		30	1.0	-	-	-
			2.1	-	-	-
		50	1.0	-	-	-
			2.1	10422015	10793097	10449644
			3.0	-	-	-
			4.6	-	-	-
		100	1.0	-	_	-
			2.1	10207834	10177994	10601406
			3.0	-	-	-
		150	2.1	10431825	10670246	10229564
		200	2.1	10595125	10732347	10611406
3	Drop-in Guard (4/pk)	10	1.0	10459054	10036304	10177644
			2.1	10380915	10698515	10016414
			3.0	10279654	10478664	10742137
			4.0/4.6	10026124	10056114	10167734
	HPLC Column	30	2.1	_	10681196	10077194
		00	3.0	_	_	_
			4.6	-	_	_
		50	2.1	10208264	10187654	10037824
		50	3.0	-	-	-
			4.0	_	_	_
			4.6	_	_	_
		100	1.0	_	-	_
		100	2.1	10056364	10742527	10097834
			3.0	10437324		-
					10689755	-
			4.0	-	-	-
		150	4.6	10690256	10289364	10467254
		150	1.0	10794627	10211095	10087344
			2.1	-	10600826	10763606
			3.0	10446984	10169564	10139184
			4.0	-	-	-
		10	4.6	10287924	10381295	10027654
5	Drop-in Guard (4/pk)	10	2.1	10025644	10659465	10469644
			3.0	10525435	10525615	10536185
			4.0/4.6	10351445	10259174	10734817
	HPLC Column	30	2.1	-	-	-
			3.0	-	-	-
			4.6	-	-	-
		50	2.1	10675335	10427324	-
			3.0	-	-	-
			4.6	10762907	10157554	10547245
		100	2.1	10753477	10391295	10302455
			3.0	10127604	10169524	-
			4.6	-	-	10231385
		150	2.1	-	-	10567455
			3.0	-	-	-
			4.0	-	-	-
			4.6	10014574	10006074	10077364
		250	2.1	-	10554105	10332885
		250	2.1 3.0	 10594095	10554105 10517455	10332885 10734366
		250	2.1 3.0 4.0			

Particle Size (µm)	Description	Length (mm)	ID (mm)	Hypersil GOLD SAX	Hypersil GOLD Silica	Hypersil GOLD HILIC
1.9	UHPLC Column	20	2.1	-	-	-
		30	1.0	-	-	-
			2.1	-	-	-
		50	1.0	-	-	-
			2.1	-	10722157	11527931
			3.0	-	-	-
		100	4.6	-	_	-
		100	1.0 2.1	10259514	10065884	11567931
			3.0	-	-	11007931
		150	2.1	10754257	10341165	10029259
		200	2.1	-	10498674	10029239
3	Drop-in Guard (4/pk)	10	1.0	_	10468664	11738056
5		10	2.1	10620056	10371105	11748056
			3.0	10056224	10629865	11758056
			4.0/4.6	10609685	10289124	11768056
	HPLC Column	30	2.1	_	10524125	11547941
		00	3.0	_	_	-
			4.6	_	10076744	_
		50	2.1	10362645	10187524	11597941
		00	3.0	_	_	_
			4.0	_	_	_
			4.6	_	_	_
		100	1.0	_	_	_
			2.1	10609025	10066264	11547951
			3.0	10487414	10177954	11557951
			4.0	-	-	-
			4.6	10569155	-	11577951
		150	1.0	-	10763887	11587951
			2.1	-	10764447	11597951
			3.0	10540126	10127624	11507961
			4.0	-	-	_
			4.6	10392475	10157894	11527961
5	Drop-in Guard (4/pk)	10	2.1	10702337	10555425	11708056
			3.0	10703697	10702147	11718056
			4.0/4.6	10006844	10648905	11728056
	HPLC Column	30	2.1	-	-	-
			3.0	-	-	-
			4.6	-	-	-
		50	2.1	10417454	10311535	11537971
			3.0	-	-	-
			4.6	-	-	11567971
		100	2.1	10352525	10311125	11587971
			3.0	10251185	10418284	11597971
			4.6	10477414	10290385	-
		150	2.1	10598195	10167474	-
			3.0	-	-	-
			4.0	-	-	-
			4.6	10629755	10437534	11567981
		250	2.1	10149084	10556955	11587981
			3.0	10417624	-	11597981
			4.0	10333065	10774077	11507991
			4.6	10703786	10360835	11517991

Resources for Chromatographers

Thermo Scientific Chromatography Columns and Consumables Catalog

This extensive catalog offers 450 pages of proven chromatography tools and product selection guides. Available online, with a robust search tool and optimized for your iPad[®].

Visit www.thermofisher.com/catalog

Chromatography Resource Center

Our web-based resource center provides technical support, applications, technical tips and literature to help move your separations forward.

Visit www.thermofisher.com/sbe

Chromexpert

A dedicated team of technical support specialists and application chemists available to help you with product selection and assistance when using your chromatography consumables. Our experts have access to the latest chromatography technology and will act as your trusted advisors. For application and technical support. Visit www.thermofisher.com/chromexpert

AppsLab Library

Thermo Scientific[™] AppsLab Library of Analytical Applications provides more than 1300 detailed application examples for the columns listed in the 2016–2017 Chromatography Columns and Consumables Catalog. Search, filter and download complete methods to optimize your separation or implement validated methods using Thermo Scientific[™] Dionex[™] Chromeleon[™] Chromatography Data System (CDS) software. AppsLab Library makes our global application expertise accessible to you–online and downloadable. Visit www.thermofisher.com/AppsLab

For more information, contact Fisher Scientific

Austria: +43 (0)800 20 88 40 Belgium: +32 (0)056 260 260 Denmark: +45 70 27 99 20 Germany: +49 (0)2304 932-5 Ireland: +353 (0)1 885 5854 Italy: +39 02 950 59 478 Finland: +358 (0)9 8027 6280 France: +33 (0)3 88 67 14 14 Netherlands: +31 (0)20 487 70 00 Norway: +47 22 95 59 59 Portugal: +351 21 425 33 50 Spain: +34 902 239 303 Sweden: +46 31 352 32 00 Switzerland: +41 (0)56 618 41 11 UK: +44 (0)1509 555 500

For Research Use Only. Not for use in diagnostic procedures. © 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TG21486-EN 0217S